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Quasi-Optimal Estimates for Finite
Element Approximations Using Orlicz Norms*

By Ricardo G. Duran

Abstract. We consider the approximation by linear finite elements of the solution of the
Dirichlet problem —Au = f. We obtain a relation between the error in the infinite norm and
the error in some Orlicz spaces. As a consequence, we get quasi-optimal uniform estimates
when u has second derivatives in the Orlicz space associated with the exponential function.
This estimate contains, in particular, the case where f belongs to L* and the boundary of the
domain is regular. We also show that optimal order estimates are valid for the error in this
Orlicz space provided that u be regular enough.

1. Introduction. Consider the problem of finding « such that
{—Au =f inQ,
u=0 ond,
where € is a bounded domain contained in R” and f is a given function.
We shall use standard notation for the Sobolev spaces W,X(2) and H*(Q) = W
with the norms

I lepa= 2 111,,.00

J<k

where

1flp0= 2 ID|iro).
la =/

We shall write || f||, , = | fll«.,.0 and | |4, = | flk,p.o When there is no confusion.
The letter C will denote a constant, not necessarily the same at each occurrence.
For simplicity we will consider @ to be a convex polyhedral domain, but the

results are valid in more general domains as in [9].

Let {Z,} be a quasi-regular family of triangulations of @ and denote by u, the

H}-projection of u into the space of piecewise linear functions M, C H{, that is,

/ Vuvv,dx = f fodx, v, €EM,.
Q Q

It is well known (see [1]) that

lu = uylo, < Ch2|“|2,2 and |u — u,|,, < Chlul,,.
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18 RICARDO G. DURAN

Many authors have studied estimates for u — u,, in W,'-norms and L”-norms. In
[8] the following optimal estimate for the gradient of the error in L? is obtained,

lu—uply, < Chllul,, forl<p< oo.
Then by the usual duality argument (see [1]) they get
|u - uth,p < Ch2||u||2,p for2 < p < o,

provided that Q is a convex polygonal domain or € is smooth.
As is known, this duality argument cannot be applied for p = oo.
A quasi-optimal estimate for the error in L* was obtained in [9], where it is
proved that

1
lu — o0 < ChlegZ”“”zw-

Moreover, in [4] an example is given that shows that the logarithm in this estimate
cannot be removed.

We will work here with Orlicz spaces defined in the following way. Given a
convex function ¢: R, — R, ¢(0) = 0, let

L#(Q) = {flEIb > 0|fQ ¢(%|) dx < oo}.

L? is a Banach space with the norm

1 llze = inf{b > 0|fQ ¢(|L(bfc—)—') dx < 1}.

We will call W the space of functions in L? with derivatives up to the order k in
L?, and we will use analogous notation as in the L7 case for the norms and
seminorms.

When the boundary of € is regular and 1 < p < oo [3],

lullo,, < Cl 1o,

and consequently,
|u - uth.p < Chzlflo.p'

As is well known, the regularity result mentioned above is not true for p = oo, but if
f€ L” the solution u € W, where ¢,(1)=e’—t— 1. Moreover, the second
derivatives of u are in the space of functions with bounded mean oscillation BMO
(same proof as in the L? case [3], using the result of [6]) and this space is contained
in L* when the domain is bounded, [5]. Then it is natural to seek an estimate for
lu — u,lo., When u has second derivatives in L%

In this paper we obtain a relation between the error in L* and the error in some
Orlicz spaces that implies in particular the following quasi-optimal estimate,

1 2
= sl < 210 ) o,

This estimate contains as a particular case the following one proved in [9],

1 2
= sl < Ch2(108 1) 1/l
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A similar estimate was obtained also in [7] but with a higher power of the
logarithm and with the BMO norm of the second derivatives in the right-hand side.
Our result is more general because BMO is strictly contained in L*' (for example,
in & = (-1,1) the function
_ [logx, x>0,
/(x) {0, x <0,

isin L* but not in BMO).
Error estimates for problems where u has other kinds of singularities can be
obtained by our theorem. As examples, consider 2 = {x € R*||x| < 1/e} and

2 1\
u(x) =|x]| (logﬁ) —1/e*, neN.
x

In this case, D°u € L*(Q) for |a| = 2, where ¢(¢) = e — " — 1, and then we will
get the following estimate,

h ” u”2,4>'

Finally, we show in the two-dimensional case that

141/
lu — uylo.o < Chz(log l)

lu — ”h|0,¢, < Chz””"z,ow

provided that 9% is smooth or @ is a Lipschitz convex domain. In this way we show
that the logarithm factor can be removed if we replace the L*-norm on the left by a
slightly weaker Orlicz norm.

2. Error Estimates.
LEMMA 1. If v € M, the following inverse inequality holds,
(1) |00, < Co7H(1/R")[0]0,6-

Proof. Let T € 7, such that |v|, ,, + = |V] 4 By usual scaling arguments one can
see that

[0]0.00,7 < C(l/h")fT lo(x)|dx.

Let ¢ be the complementary function of ¢; then we can apply the Holder inequality
for Orlicz spaces, and we have

(2) |U |0,oo,T < C(l/h")| v ,0,¢|X |0.\ln

where x is the characteristic function of T. But |x|,, = b, where b satisfies
[ vQ/p)dx =1,
T

so b =1/y"}1/|T|) and then, using the inequality ¢ < ¢~1(z)y~1(¢), we get
(3) b<|T|¢7(1/IT]) < Ch"¢(1/h"),

and (2) and (3) imply (1). O
The result of the following lemma is proved in [2] but we give here a more direct
proof.
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LEMMA 2. Let g be a continuous function such that 9g/dx; € L*(Q), where Q C R"
is an open set with Lipschitz boundary. Assume that

w(e) = ["67(1/sm) ds
0
is finite. Then,

(4) | |g(x +y) — g(x)]< Clgligonlly])

Proof. Taking an extension, we can assume that g is in W¢1(R"). Let n € C§° such
that {7 =1and 0 < n(x) < 1, n,(x) = t""n(x/t) and v(x,t) = g *n,(x); then

(30/0x,)(x, 1) = [ (3g/3x,)(y)m.(x = ») dy,
and applying the Holder inequality, we have
(5) |(Gv/8xj)(x, t) ’ < 2|8g/8xj|0‘¢|n,|0,¢.
Set b = t~"/}(t7"); then, since n(x/¢) < 1 and ¢ is convex, we have
[wemm(x/nypyax = [ (v (" m(x/n) dx < [ n(x/0)mdx =1,

Consequently,

[0 loy < 7"/ (") < ¢7H(E"),
and by (5),

|(av/axj)(x’ t) | < 2|8g/8xj|0‘¢¢‘1(t‘"),
A similar estimate for dv/d¢ can be obtained in the following way. First observe that

a'l],/at = - Z a(xin)t/axi;
i=1

then,

(a0/a0)(x,0) = (g +3n,/00)(x) = - £ (g +3(x,1) /o)

= - Z ag/axi*(xin)n

i=1

and now we are in the same situation as before, with 1 replaced by x,n. In the same
way we can prove that

[(xim) Jo.p < 7' (r=)max{ [ xnll ., [xml.- }
and then,

|(0/31)(x, 1) | < Clglhes™(17"),

where C depends on 7.
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Now (4) follows easily, writing
g(x +y) —g(x) = [g(x +y) = v(x +y1y)] +[o(x +y.1y]) = v(x.]y])]
+[o(x, 1y1) - g(x)]

and estimating each summand separately. O

Now we restrict ourselves to functions of the form ¢(¢) = r%,a jtf with a; > 0,
because our main example is of this form. For this class of functions it is easy to
prove results about the error for Lagrange interpolation in the ¢-norm. In fact, using
the known estimates for L”-norms and the series expansion of ¢, we get the
following result,

[u— Lul; o < CR*|ully4, Jj=0,1,

where I,u is the Lagrange interpolation of u. Then we can state the following
corollary of Lemma 2.

COROLLARY 1. Let ¢(t) = L% ,a;t/, a; > 0, be an Orlicz function; then
lu = Luly, < Chp(h)|ula.q-
We can now give a theorem which compares the error in L*- and L®-norms.

THEOREM 1. If ¢ satisfies the condition of Corollary 1 and p is the function
associated with ¢ in Lemma 2, then there exists a constant C such that

lu = uy o,
= tylo. < Chis(h)| oy + =5 .

Proof. By Lemma 1 and Corollary 1 we have

lu = uplo o <l = Luly o +Lu = g
< Clhu(h)ullog + ¢ (/") L = uylo ]
But |I,u — uly 4 < Ch?|ul|,, and then,
| = oy < ClAB(R) |ttllag + B2 (Rt llag + 67 (A™") 1 — wplo ).

Noting that h¢™'(h~") < p(h), we obtain the result. [

COROLLARY 2. There exists a constant C such that

(6) |u = uploo < Ch(log h™)p(h)llully
and, in particular,

: )2
(7) lu = uplo < Ch*(logh™*) | ulp.g,-

Proof. By the known estimates [9], [1]
| — uplo.o < Chzlogh'lllullz,w and |u — uyly, < Ch2||“||2.2
we get by interpolation
lu —u,lo, < Ch*logh™Y|ull,, for2<p < oo,
with C independent of p. Using the expansion in power series of ¢, we get
4= uplo.s < Chlogh~ull,,,

hence, by Theorem 1, we get (6).
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When ¢ = ¢, it is easily shown that p;(h) < Chlogh™ for small A and this
proves (7). O

We will show in the following theorem that as a consequence of the estimates for
lu — u,); ., [8] we have optimal-order estimates in the ¢,-norm if u € W.2.

THEOREM 2. Let @ C R? be such that 0 is smooth or Q is convex with Lipschitz
boundary. Then there exists a constant C such that
|u — uh|0,¢1 < Ch2||u”2,oo-
Proof. In [8] it is proved that
lu =yl , < Chllully,, 2<p<oo.
On the other hand, if v € H}(?) and -Av = g,

C
(8) lolbq < 7 =7 llglls for1<g<2.

In fact, if € has a smooth boundary (for instance C'), (8) can be shown by the
classical proof [3], examining carefully the constants involved. In the case of a
Lipschitz convex domain this result was proven recently by T. Wolff in unpublished
work. Indeed, he has proven a weak type inequality for L! that, together with the
known result for ¢ = 2, implies (8) by usual interpolation methods.

By the known duality argument of Aubin-Nitsche [1], and using (8), we get

|u - uhIO,p < Cphzllu“Z,pa 2 < p < o0,
with C independent of p. ’
But, in general, if we have two functions g; and g, such that
|81lo., < Ciplg2loy  2<p < o0,
then,

|81|0,¢1 S C1C2|g2|0,oo’
where C, depends only on . In fact,

!gl(x)l _ - lgl(x)|j 1
el B AR

KIgZIO,oo j=2 KjngI({,oo ‘]'

" o Ciillali
-y 1 fglgl(x)ljdxs y L5k 18216,

=2 J'K’1 8314 =2 J'K’| 8514 0
0 Cl fjj

<X (—) 12l
ot K j

and the last series is convergent and less than 1 if we choose K = C,C, with C,
sufficiently large, depending only on £. O
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