Quasi-Optimal Estimates for Finite Element Approximations Using Orlicz Norms*

By Ricardo G. Durán

Abstract. We consider the approximation by linear finite elements of the solution of the Dirichlet problem $-\Delta u = f$. We obtain a relation between the error in the infinite norm and the error in some Orlicz spaces. As a consequence, we get quasi-optimal uniform estimates when u has second derivatives in the Orlicz space associated with the exponential function. This estimate contains, in particular, the case where f belongs to L^{∞} and the boundary of the domain is regular. We also show that optimal order estimates are valid for the error in this Orlicz space provided that u be regular enough.

1. Introduction. Consider the problem of finding *u* such that

$$\begin{cases} -\Delta u = f & \text{in } \Omega, \\ u = 0 & \text{on } \partial \Omega, \end{cases}$$

where Ω is a bounded domain contained in \mathbb{R}^n and f is a given function.

We shall use standard notation for the Sobolev spaces $W_p^k(\Omega)$ and $H^k(\Omega) = W_2^k$ with the norms

$$\|f\|_{k,p,\Omega}=\sum_{j\leqslant k}|f|_{j,p,\Omega},$$

where

$$\|f\|_{j,p,\Omega} = \sum_{|\alpha|=j} \|D^{\alpha}f\|_{L^{p}(\Omega)}.$$

We shall write $||f||_{k,p} = ||f||_{k,p,\Omega}$ and $|f|_{k,p} = |f|_{k,p,\Omega}$ when there is no confusion.

The letter C will denote a constant, not necessarily the same at each occurrence.

For simplicity we will consider Ω to be a convex polyhedral domain, but the results are valid in more general domains as in [9].

Let $\{\mathscr{T}_h\}$ be a quasi-regular family of triangulations of Ω and denote by u_h the H_0^1 -projection of u into the space of piecewise linear functions $M_h \subset H_0^1$, that is,

$$\int_{\Omega} \nabla u_h \nabla v_h \, dx = \int_{\Omega} f v \, dx, \qquad v_h \in M_h.$$

It is well known (see [1]) that

$$|u - u_h|_{0,2} \leq Ch^2 |u|_{2,2}$$
 and $|u - u_h|_{1,2} \leq Ch |u|_{2,2}$.

Received September 16, 1985; revised May 15, 1986.

¹⁹⁸⁰ Mathematics Subject Classification (1985 Revision). Primary 65N30.

^{*}Supported by Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina.

Many authors have studied estimates for $u - u_h$ in W_p^1 -norms and L^p -norms. In [8] the following optimal estimate for the gradient of the error in L^p is obtained,

$$|u - u_h|_{1,p} \leq Ch ||u||_{2,p} \quad \text{for } 1$$

Then by the usual duality argument (see [1]) they get

$$|u - u_h|_{0,p} \leq Ch^2 ||u||_{2,p} \quad \text{for } 2 \leq p < \infty,$$

provided that Ω is a convex polygonal domain or $\partial \Omega$ is smooth.

As is known, this duality argument cannot be applied for $p = \infty$.

A quasi-optimal estimate for the error in L^{∞} was obtained in [9], where it is proved that

$$|u-u_h|_{0,\infty} \leqslant Ch^2 \log \frac{1}{h} ||u||_{2,\infty}.$$

Moreover, in [4] an example is given that shows that the logarithm in this estimate cannot be removed.

We will work here with Orlicz spaces defined in the following way. Given a convex function $\phi: R_+ \rightarrow R_+, \phi(0) = 0$, let

$$L^{\phi}(\Omega) = \left\{ f | \exists b > 0 | \int_{\Omega} \phi\left(\frac{|f|}{b}\right) dx < \infty \right\}.$$

 L^{ϕ} is a Banach space with the norm

$$\|f\|_{L^{\phi}} = \inf\left\{b > 0 \mid \int_{\Omega} \phi\left(\frac{|f(x)|}{b}\right) dx \leq 1\right\}.$$

We will call W_{ϕ}^{k} the space of functions in L^{ϕ} with derivatives up to the order k in L^{ϕ} , and we will use analogous notation as in the L^{p} case for the norms and seminorms.

When the boundary of Ω is regular and 1 [3],

$$||u||_{2,p} \leq C|f|_{0,p},$$

and consequently,

$$|u - u_h|_{0,p} \leq Ch^2 |f|_{0,p}.$$

As is well known, the regularity result mentioned above is not true for $p = \infty$, but if $f \in L^{\infty}$ the solution $u \in W_{\phi_1}^2$, where $\phi_1(t) = e^t - t - 1$. Moreover, the second derivatives of u are in the space of functions with bounded mean oscillation BMO (same proof as in the L^p case [3], using the result of [6]) and this space is contained in L^{ϕ_1} when the domain is bounded, [5]. Then it is natural to seek an estimate for $|u - u_h|_{0,\infty}$ when u has second derivatives in L^{ϕ_1} .

In this paper we obtain a relation between the error in L^{∞} and the error in some Orlicz spaces that implies in particular the following quasi-optimal estimate,

$$|u - u_h|_{0,\infty} < Ch^2 \left(\log \frac{1}{h}\right)^2 ||u||_{2,\phi_1}.$$

This estimate contains as a particular case the following one proved in [9],

$$|u-u_h|_{0,\infty} < Ch^2 \left(\log \frac{1}{h}\right)^2 |f|_{0,\infty}.$$

A similar estimate was obtained also in [7] but with a higher power of the logarithm and with the BMO norm of the second derivatives in the right-hand side.

Our result is more general because BMO is strictly contained in L^{ϕ_1} (for example, in $\Omega = (-1, 1)$ the function

$$f(x) = \begin{cases} \log x, & x > 0, \\ 0, & x < 0, \end{cases}$$

is in L^{ϕ_1} but not in BMO).

Error estimates for problems where u has other kinds of singularities can be obtained by our theorem. As examples, consider $\Omega = \{x \in R^2 | |x| < 1/e\}$ and

$$u(x) = |x|^2 \left(\log \frac{1}{|x|}\right)^{1/n} - 1/e^2, \quad n \in N.$$

In this case, $D^{\alpha}u \in L^{\phi}(\Omega)$ for $|\alpha| = 2$, where $\phi(t) = e^{t^n} - t^n - 1$, and then we will get the following estimate,

$$|u - u_h|_{0,\infty} \leq Ch^2 \left(\log \frac{1}{h}\right)^{1+1/n} ||u||_{2,\phi}.$$

Finally, we show in the two-dimensional case that

$$|u - u_h|_{0,\phi_1} \leq Ch^2 ||u||_{2,\infty},$$

provided that $\partial \Omega$ is smooth or Ω is a Lipschitz convex domain. In this way we show that the logarithm factor can be removed if we replace the L^{∞} -norm on the left by a slightly weaker Orlicz norm.

2. Error Estimates.

LEMMA 1. If $v \in M_h$ the following inverse inequality holds,

(1)
$$|v|_{0,\infty} \leq C\phi^{-1}(1/h^n)|v|_{0,\phi}$$

Proof. Let $T \in \mathcal{T}_h$ such that $|v|_{0,\infty,T} = |v|_{0,\infty}$. By usual scaling arguments one can see that

$$|v|_{0,\infty,T} \leq C(1/h^n) \int_T |v(x)| dx.$$

Let ψ be the complementary function of ϕ ; then we can apply the Hölder inequality for Orlicz spaces, and we have

(2)
$$|v|_{0,\infty,T} \leq C(1/h^n)|v|_{0,\phi}|\chi|_{0,\psi},$$

where χ is the characteristic function of T. But $|\chi|_{0,\psi} = b$, where b satisfies

$$\int_T \psi(1/b) \, dx = 1,$$

so $b = 1/\psi^{-1}(1/|T|)$ and then, using the inequality $t \leq \phi^{-1}(t)\psi^{-1}(t)$, we get

(3)
$$b \leq |T|\phi^{-1}(1/|T|) \leq Ch^n \phi^{-1}(1/h^n),$$

and (2) and (3) imply (1). \Box

The result of the following lemma is proved in [2] but we give here a more direct proof.

LEMMA 2. Let g be a continuous function such that $\partial g/\partial x_j \in L^{\phi}(Q)$, where $Q \subset \mathbb{R}^n$ is an open set with Lipschitz boundary. Assume that

$$\mu(t) = \int_0^t \phi^{-1}(1/s^n) \, ds$$

is finite. Then,

(4)
$$|g(x+y) - g(x)| \leq C|g|_{1,\phi,Q} \mu(|y|).$$

Proof. Taking an extension, we can assume that g is in $W_{\phi}^{1}(\mathbb{R}^{n})$. Let $\eta \in C_{0}^{\infty}$ such that $\int \eta = 1$ and $0 \leq \eta(x) \leq 1$, $\eta_{t}(x) = t^{-n}\eta(x/t)$ and $v(x, t) = g * \eta_{t}(x)$; then

$$(\partial v/\partial x_j)(x,t) = \int (\partial g/\partial x_j)(y)\eta_t(x-y)\,dy,$$

and applying the Hölder inequality, we have

(5)
$$|(\partial v/\partial x_j)(x,t)| \leq 2|\partial g/\partial x_j|_{0,\phi}|\eta_t|_{0,\psi}$$

Set $b = t^{-n}/\psi^{-1}(t^{-n})$; then, since $\eta(x/t) \leq 1$ and ψ is convex, we have

$$\int \psi(t^{-n}\eta(x/t)/b) dx = \int \psi(\psi^{-1}(t^{-n})\eta(x/t)) dx \leq \int \eta(x/t)t^{-n} dx = 1.$$

Consequently,

$$|\eta_t|_{0,\psi} \leq t^{-n}/\psi^{-1}(t^{-n}) \leq \phi^{-1}(t^{-n}),$$

and by (5),

$$|(\partial v/\partial x_j)(x,t)| \leq 2|\partial g/\partial x_j|_{0,\phi}\phi^{-1}(t^{-n}).$$

A similar estimate for $\frac{\partial v}{\partial t}$ can be obtained in the following way. First observe that

$$\partial \eta_t / \partial t = -\sum_{i=1}^n \partial (x_i \eta)_t / \partial x_i;$$

then,

$$(\partial v/\partial t)(x,t) = (g * \partial \eta_t / \partial t)(x) = -\sum_{i=1}^n (g * \partial (x_i \eta)_i / \partial x_i)$$
$$= -\sum_{i=1}^n \partial g / \partial x_i * (x_i \eta)_i,$$

and now we are in the same situation as before, with η replaced by $x_i\eta$. In the same way we can prove that

$$|(x_i\eta)_t|_{0,\psi} \leq \phi^{-1}(t^{-n})\max\{||x_i\eta||_{L^1}, ||x_i\eta||_{L^\infty}\}$$

and then,

$$|(\partial v/\partial t)(x,t)| \leq C|g|_{1,\phi}\phi^{-1}(t^{-n}),$$

where C depends on η .

Now (4) follows easily, writing

$$g(x + y) - g(x) = [g(x + y) - v(x + y, |y|)] + [v(x + y, |y|) - v(x, |y|)] + [v(x, |y|) - g(x)]$$

and estimating each summand separately.

Now we restrict ourselves to functions of the form $\phi(t) = \sum_{j=2}^{\infty} a_j t^j$ with $a_j \ge 0$, because our main example is of this form. For this class of functions it is easy to prove results about the error for Lagrange interpolation in the ϕ -norm. In fact, using the known estimates for L^p -norms and the series expansion of ϕ , we get the following result,

$$|u - I_h u|_{j,\phi} \leq C h^{2-j} ||u||_{2,\phi}, \qquad j = 0, 1,$$

where $I_h u$ is the Lagrange interpolation of u. Then we can state the following corollary of Lemma 2.

COROLLARY 1. Let
$$\phi(t) = \sum_{j=2}^{\infty} a_j t^j$$
, $a_j \ge 0$, be an Orlicz function; then
 $|u - I_h u|_{0,\infty} \le Ch\mu(h) ||u||_{2,\phi}$.

We can now give a theorem which compares the error in L^{∞} - and L^{ϕ} -norms.

THEOREM 1. If ϕ satisfies the condition of Corollary 1 and μ is the function associated with ϕ in Lemma 2, then there exists a constant C such that

$$|u - u_h|_{0,\infty} \leq Ch\mu(h) \left[||u||_{2,\phi} + \frac{|u - u_h|_{0,\phi}}{h^2} \right]$$

Proof. By Lemma 1 and Corollary 1 we have

$$|u - u_h|_{0,\infty} \leq |u - I_h u|_{0,\infty} + |I_h u - u_h|_{0,\infty}$$

$$\leq C \Big[h\mu(h) ||u||_{2,\phi} + \phi^{-1} (1/h^n) |I_h u - u_h|_{0,\phi} \Big].$$

But $|I_h u - u|_{0,\phi} \leq Ch^2 ||u||_{2,\phi}$ and then,

$$|u - u_h|_{0,\infty} \leq C \Big[h\mu(h) ||u||_{2,\phi} + h^2 \phi^{-1}(h^{-n}) ||u||_{2,\phi} + \phi^{-1}(h^{-n}) ||u - u_h|_{0,\phi} \Big].$$

Noting that $h\phi^{-1}(h^{-n}) \leq \mu(h)$, we obtain the result. \Box

COROLLARY 2. There exists a constant C such that

(6)
$$|u - u_h|_{0,\infty} \leq Ch (\log h^{-1}) \mu(h) ||u||_{2,\phi}$$

and, in particular,

(7)
$$|u - u_h|_{0,\infty} < Ch^2 (\log h^{-1})^2 ||u||_{2,\phi_1}.$$

Proof. By the known estimates [9], [1]

 $|u - u_h|_{0,\infty} \le Ch^2 \log h^{-1} ||u||_{2,\infty}$ and $|u - u_h|_{0,2} \le Ch^2 ||u||_{2,2}$ we get by interpolation

$$|u - u_h|_{0,p} \le Ch^2 \log h^{-1} ||u||_{2,p}$$
 for $2 \le p < \infty$,

with C independent of p. Using the expansion in power series of ϕ , we get

 $|u - u_h|_{0,\phi} < Ch^2 \log h^{-1} ||u||_{2,\phi},$

hence, by Theorem 1, we get (6).

When $\phi = \phi_1$ it is easily shown that $\mu_1(h) \leq Ch \log h^{-1}$ for small h and this proves (7). \Box

We will show in the following theorem that as a consequence of the estimates for $|u - u_h|_{1,\infty}$ [8] we have optimal-order estimates in the ϕ_1 -norm if $u \in W_{\infty}^2$.

THEOREM 2. Let $\Omega \subset \mathbb{R}^2$ be such that $\partial \Omega$ is smooth or Ω is convex with Lipschitz boundary. Then there exists a constant C such that

$$|u - u_h|_{0,\phi_1} \leq Ch^2 ||u||_{2,\infty}$$

Proof. In [8] it is proved that

$$|u-u_h|_{1,p} \leq Ch ||u||_{2,p}, \qquad 2 \leq p \leq \infty.$$

On the other hand, if $v \in H_0^1(\Omega)$ and $-\Delta v = g$,

(8)
$$||v||_{2,q} \leq \frac{C}{q-1} ||g||_q$$
 for $1 < q \leq 2$.

In fact, if Ω has a smooth boundary (for instance $C^{1,1}$), (8) can be shown by the classical proof [3], examining carefully the constants involved. In the case of a Lipschitz convex domain this result was proven recently by T. Wolff in unpublished work. Indeed, he has proven a weak type inequality for L^1 that, together with the known result for q = 2, implies (8) by usual interpolation methods.

By the known duality argument of Aubin-Nitsche [1], and using (8), we get

$$|u-u_h|_{0,p} \leq Cph^2 ||u||_{2,p}, \qquad 2 \leq p < \infty,$$

with C independent of p.

But, in general, if we have two functions g_1 and g_2 such that

$$|g_1|_{0,p} \leq C_1 p |g_2|_{0,p}, \qquad 2 \leq p < \infty,$$

then,

$$|g_1|_{0,\phi_1} \leq C_1 C_2 |g_2|_{0,\infty},$$

where C_2 depends only on Ω . In fact,

$$\begin{split} \int_{\Omega} \phi_1 \bigg(\frac{|g_1(x)|}{K|g_2|_{0,\infty}} \bigg) \, dx &= \int_{\Omega} \sum_{j=2}^{\infty} \frac{|g_1(x)|^j}{K^j|g_2|_{0,\infty}^j} \frac{1}{j!} \, dx \\ &= \sum_{j=2}^{\infty} \frac{1}{j!K^j|g_2|_{0,\infty}^j} \int_{\Omega} |g_1(x)|^j dx \leqslant \sum_{j=2}^{\infty} \frac{C_1^j j^j|g_2|_{0,j}^j}{j!K^j|g_2|_{0,\infty}^j} \\ &\leqslant \sum_{j=2}^{\infty} \left(\frac{C_1}{K} \right)^j \frac{j^j}{j!} |\Omega|, \end{split}$$

and the last series is convergent and less than 1 if we choose $K = C_1C_2$ with C_2 sufficiently large, depending only on Ω . \Box

Department of Mathematics University of Chicago Chicago, Illinois 60637

1. P. G. CIARLET, The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam, 1978.

2. T. K. DONALDSON & N. S. TRUDINGER, "Orlicz-Sobolev spaces and imbedding theorems," J. Funct. Anal., v. 8, 1971, pp. 52-75.

3. D. GILBARG & N. S. TRUDINGER, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin and New York, 1983.

4. R. HAVERKAMP, "Eine Aussage zur L^{∞} -Stabilität und zur genauen Konvergenzordnung der H_0^1 -Projektionen," preprint 508, Sonderforschungsbereich 72, Approximation und Optimierung, Universität Bonn, 1983.

5. F. JOHN & L. NIRENBERG, "On functions of bounded mean oscillation," Comm. Pure Appl. Math., v. 14, 1961, pp. 415-426.

6. J. PEETRE, "On convolution operators leaving $L^{p,\lambda}$ invariant," Ann. Mat. Pura Appl., v. 72, 1966, pp. 295–304.

7. R. RANNACHER, "Zur L[∞]-Konvergenz linearer finiter Elemente beim Dirichlet-Problem," Math. Z., v. 149, 1976, pp. 69–77.

8. R. RANNACHER & R. SCOTT, "Some optimal error estimates for piecewise linear finite element approximations," *Math. Comp.*, v. 38, 1982, pp. 437-445.

9. A. H. SCHATZ & L. B. WAHLBIN, "On the quasi-optimality in L_{∞} of the \mathring{H}^1 -projection into finite element spaces," *Math. Comp.*, v. 38, 1982, pp. 1–22.