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Quasi-Optimal Estimates for Finite 
Element Approximations Using Orlicz Norms* 

By Ricardo G. Duran 

Abstract. We consider the approximation by linear finite elements of the solution of the 
Dirichlet problem -A u = f. We obtain a relation between the error in the infinite norm and 
the error in some Orlicz spaces. As a consequence, we get quasi-optimal uniform estimates 
when u has second derivatives in the Orlicz space associated with the exponential function. 
This estimate contains, in particular, the case where f belongs to L?? and the boundary of the 
domain is regular. We also show that optimal order estimates are valid for the error in this 
Orlicz space provided that u be regular enough. 

1. Introduction. Consider the problem of finding u such that 

-Au=f inQ, 
u u= on aQ, 

where Q is a bounded domain contained in Rn and f is a given function. 
We shall use standard notation for the Sobolev spaces W k(Q) and Hk(Q) =W 

with the norms 

1l1 I1k,p,Q I | f Ij,p,Q 
ja k 

where 

If I j = E II DafIILP(Q). 
| a I = j 

We shall write Ilf lk p = If IIk pu and If Ikp = If Ikpg when there is no confusion. 
The letter C will denote a constant, not necessarily the same at each occurrence. 
For simplicity we will consider Q to be a convex polyhedral domain, but the 

results are valid in more general domains as in [9]. 
Let { Y7h } be a quasi-regular family of triangulations of Q and denote by Uh the 

HO-projection of u into the space of piecewise linear functions Mh C Hi, that is, 

VUhVvhdX = fvdx, VhEMh. 

It is well known (see [1]) that 

Iu-uh0,2 < Ch2Iu2,2 and I U uhl12 < Chlu122. 
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Many authors have studied estimates for u - Uh in WI'-norms and LP-norms. In 
[8] the following optimal estimate for the gradient of the error in LP is obtained, 

IU-Uhl1p<ChIIU12,p for1<ppoo. 

Then by the usual duality argument (see [1]) they get 

IU- Uh 1,p < Ch2II uI2,p for2 <p < o, 

provided that Q is a convex polygonal domain or AQ is smooth. 
As is known, this duality argument cannot be applied for p = oo. 
A quasi-optimal estimate for the error in Lo" was obtained in [9], where it is 

proved that 

IU - ULIA 1 <Ch2log u112,. h ' 

Moreover, in [4] an example is given that shows that the logarithm in this estimate 
cannot be removed. 

We will work here with Orlicz spaces defined in the following way. Given a 
convex function p: R + R- , 4(0) = 0, let 

L+(Q) = f13b > ( ) dx < oo} 

LO is a Banach space with the norm 

11 f 11LO= infb > oi0 ( f () )dx < 1}. 

We will call Wok the space of functions in LO with derivatives up to the order k in 
LO, and we will use analogous notation as in the L P case for the norms and 
seminorms. 

When the boundary of Q is regular and 1 < p < so [3], 

II U112,p < Of 10,p, 

and consequently, 

IU - Uh op-< Ch2If10,p 

As is well known, the regularity result mentioned above is not true for p = so, but if 
f E L?? the solution u E W2, where 01(t) = et - t - 1. Moreover, the second 
derivatives of u are in the space of functions with bounded mean oscillation BMO 
(same proof as in the LP case [3], using the result of [6]) and this space is contained 
in LO, when the domain is bounded, [5]. Then it is natural to seek an estimate for 

lu U-h I oo when u has second derivatives in L,1. 
In this paper we obtain a relation between the error in L?? and the error in some 

Orlicz spaces that implies in particular the following quasi-optimal estimate, 

U- Uh|oo <Ch2(log 11 lU112,0, 

This estimate contains as a particular case the following one proved in [9], 

| U - Uh oj0o < Ch2 (log ) I f lo o 
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A similar estimate was obtained also in [7] but with a higher power of the 
logarithm and with the BMO norm of the second derivatives in the right-hand side. 

Our result is more general because BMO is strictly contained in LO1 (for example, 
in 2 = (-1, 1) the function 

AX) =(log x, x > 0, 

is in LO, but not in BMO). 
Error estimates for problems where u has other kinds of singularities can be 

obtained by our theorem. As examples, consider Q = { x E R21 IxI < 1/e } and 

u(X) =I XI2(log ) -1/e2 n E N. 

In this case, Dau E L+(Q) for Ila = 2, where 0(t) = et' - tn - 1, and then we will 
get the following estimate, 

1 l+ 11n 

IU - Uh|O0 < Ch2(log h U 112,0. 

Finally, we show in the two-dimensional case that 

Iu - 
U10,0, < Ch2IuJ112., 

provided that Ad is smooth or Q is a Lipschitz convex domain. In this way we show 
that the logarithm factor can be removed if we replace the L??-norm on the left by a 
slightly weaker Orlicz norm. 

2. Error Estimates. 

LEMMA 1. If V E Mh the following inverse inequality holds, 

(1) I v Io , <- Co-'(1/h n) I V lo,0. 

Proof. Let T E 5'h such that I Vi T = I 0i0. By usual scaling arguments one can 
see that 

I V |0,oo,T -<- C(11hnl I v(x) I Ax. 

Let 4 be the complementary function of p; then we can apply the Holder inequality 
for Orlicz spaces, and we have 

(2) |Iv l0oo00T -< C(11h n) I v 10,01 x lo.+P 

where X is the characteristic function of T. But IXIo', = b, where b satisfies 

f4(1/b)dx = 1, 

so b = 1/4-1(1/ITI) and then, using the inequality t < 0-1(t)4-7(t), we get 

(3) b I T |0-1(1/1 T l) < Chno-'(11hn), 

and (2) and (3) imply (1). E 
The result of the following lemma is proved in [2] but we give here a more direct 

proof. 
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LEMMA 2. Let g be a continuous function such that ag/ax1 e LO(Q), where Q C Rn 
is an open set with Lipschitz boundary. Assume that 

M,(t) = fi -1(1/Sn) ds 
0 

is finite. Then, 

(4) g (X + y) - g(x) I -<- Cl g 1. l'oo(I Y ) 

Proof. Taking an extension, we can assume that g is in W<,(Rn). Let -q e CO? such 
that f J = 1 and 0 < -q(x) < 1, 71t(x) = t-nvq(x/t) and v(x, t) = g * 7qt(x); then 

(av/ax1)(x, t) = f (ag/axj)(y)qt(x - y) dy, 

and applying the Holder inequality, we have 

() I(a Vaxj) (x, t) 21 2aglaxj lo,,,Iqt 10,p 

Set b = t-n~/4-(t-n); then, since rl(x/t) < 1 and 4 is convex, we have 

f 4(t-n,,(x/t)/b) dx = f 4(4x'(t-n)'q(x/t)) dx q f q(x/t)t-ndx = 1 

Consequently, 

I -qt Io,+ 4 t /nl~-(t-n) <<>lt 

and by (5), 

|(a vlxj) (x, t) 21 a |glaxjo ,$,.0 (tn). 

A similar estimate for a v/at can be obtained in the following way. First observe that 

n 

ant/at = - a(Xitl) xi; 
i=l 

then, 
n 

(av/at)(x, t) = (g * at/at)(x) = - (g * a(Xi)/axi) 
i=l 

n 

= - E agaxi *(Xin), 
i=l 

and now we are in the same situation as before, with -q replaced by xi1q. In the same 
way we can prove that 

I(Xi7 lo ., 
0 

-1(t-n)Maxt |Xi-q1 |L' |Xi7q1 L- 

and then, 

I(av/at)(x, t) C jgj1",-1(t-n), 

where C depends on 7. 
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Now (4) follows easily, writing 

g(x + y) - g(x) =[g(x + y) - v(x + y, IyI)] + [V(x + Y, IYI) -v (x, IYI) 
+ [V(x, IYI) - g(x)] 

and estimating each summand separately. O 
Now we restrict ourselves to functions of the form 0(t) = EX 2 a tj with a > O. 

because our main example is of this form. For this class of functions it is easy to 
prove results about the error for Lagrange interpolation in the 4-norm. In fact, using 
the known estimates for LP-norms and the series expansion of 4, we get the 
following result, 

u - IhU lI s+ < Ch2-jII uII2, 2 = 0,1, 

where Ihu is the Lagrange interpolation of u. Then we can state the following 
corollary of Lemma 2. 

COROLLARY 1. Let 4)(t) = FIX2 a t', a > 0, be an Orlicz function; then 

lu - IhuI0, < Cht(h)IIuII2,,. 
We can now give a theorem which compares the error in L?- and LI-norms. 

THEOREM 1. If 4 satisfies the condition of Corollary 1 and j is the function 
associated with 4 in Lemma 2, then there exists a constant C such that 

IU - uh 10,. ChM (h) [IuI 112,0 + h2 ] 
, 

Proof. By Lemma 1 and Corollary 1 we have 

I u - Uh ?Ju -< IU - IhUIO + IIhU - Uh10, 

< C [ h(h)I u 112,, + -1(11/h )l|IhU -h ulo ,. 

But IIhu - uJ0,0 < Ch211uII2<, and then, 

- u hIO o < C[hpA(h)IIuII2,., + h24-)(h -)jju 1124, + 4)1(h-n)I U- U 1Ij 

Noting that h4-1(h-) < ,i(h), we obtain the result. El 

COROLLARY 2. There exists a constant C such that 

(6) jU - UhIO,. < Ch(logh-1)i(h)IIuII2j> 

and, in particular, 

(7) 1 u - uh I0,W < Ch2(log h-l)211 u11221. 

Proof. By the known estimates [9], [1] 

jU - uhI10 < Ch2logh-'jIuj1200 and Iu - uh102 <Ch2juI 1122 
we get by interpolation 

I u -uh op < Ch2logh-1ju 112,p for 2 < p < ox, 

with C independent of p. Using the expansion in power series of 4), we get 

I u - Uh o.,4 < Ch2log h 1 1 U j2., 

hence, by Theorem 1, we get (6). 
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When 4 = 41 it is easily shown that I1(h) < Chlogh'- for small h and this 
proves (7). 0 

We will show in the following theorem that as a consequence of the estimates for 

U - u111 o [8] we have optimal-order estimates in the 01-norm if u E Wo. 

THEOREM 2. Let Q C R2 be such that ai is smooth or Q is convex with Lipschitz 
boundary. Then there exists a constant C such that 

IU - Uh 10,0, Ch2IIU112,. 

Proof. In [8] it is proved that 

IU - uhIlP < ChIIIIU2,s, 2 - p < x. 
On the other hand, if v e Ho(Q) and -Av = g, 

(8) IV112q, <q 1 IIq forI < q < 2. 

In fact, if Q has a smooth boundary (for instance C1'1), (8) can be shown by the 
classical proof [3], examining carefully the constants involved. In the case of a 
Lipschitz convex domain this result was proven recently by T. Wolff in unpublished 
work. Indeed, he has proven a weak type inequality for L1 that, together with the 
known result for q = 2, implies (8) by usual interpolation methods. 

By the known duality argument of Aubin-Nitsche [1], and using (8), we get 

IU - UhIOP l <Cph211U112p, 2 < p < x0, 

with C independent of p. 
But, in general, if we have two functions g1 and g2 such that 

Ig1 Io,p < C1pIg210,p, 2 < p < xo, 
then, 

I 91 1,01 < ClC2192 10,oo, 

where C2 depends only on Q. In fact, 

| )( I gi(x)I dxI f = gl(x)lI 1 

=1 K d1Kil f|gi(X) |dx 6 ? 'ioo2j! 
j=2 ( !2 

and the last series is convergent and less than 1 if we choose K = C1C2 with C2 
sufficiently large, depending only on Q. E 
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